在高速发展的现代社会,计算机浩浩荡荡地成为了人们生活中不可缺少的一部分,帮助人们解决通信,联络,互动等各方面的问题。今天我就给大家讲讲与计算机有关的“进制转换”问题。

我们以(25.625)(十)为例讲解一下进制之间的转化问题
说明:小数部份的转化计算机二级是不考的,有兴趣的人可以看一看



1. 十 -----> 二

(25.625)(十)
整数部分:
25/2=12......1
12/2=6 ......0
6/2=3  ......0
3/2=1  ......1
1/2=0  ......1
然后我们将余数按从下往上的顺序书写就是:11001,那么这个11001就是十进制25的二进制形式

小数部分:
0.625*2=1.25
0.25 *2=0.5
0.5  *2=1.0
然后我们将整数部分按从上往下的顺序书写就是:101,那么这个101就是十进制0.625的二进制形式

所以:(25.625)(十)=(11001.101)(二)


2. 二 ----> 十

(11001.101)(二)
整数部分:     下面的出现的2(x)表示的是2的x次方的意思
1*2(4)+1*2(3)+0*2(2)+0*2(1)+1*2(0)=25
小数部分:  
1*2(-1)+0*2(-2)+1*2(-3)=0.625
所以:(11001.101)(二)=(25.625)(十)


3. 十 ----> 八

(25.625)(十)
整数部分:
25/8=3......1
3/8 =0......3
然后我们将余数按从下往上的顺序书写就是:31,那么这个31就是十进制25的八进制形式

小数部分:
0.625*8=5
然后我们将整数部分按从上往下的顺序书写就是:5,那么这个5就是十进制0.625的八进制形式

所以:(25.625)(十)=(31.5)(八)


4. 八 ----> 十
(31.5)(八)
整数部分:
3*8(1)+1*8(0)=25
小数部分:
5*8(-1)=0.625
所以(31.5)(八)=(25.625)(十)


5. 十 ----> 十六
(25.625)(十)
整数部分:
25/16=1......9
1/16 =0......1
然后我们将余数按从下往上的顺序书写就是:19,那么这个19就是十进制25的十六进制形式
小数部分:
0.625*16=10(即十六进制的A或a)
然后我们将整数部分按从上往下的顺序书写就是:A,那么这个A就是十进制0.625的十六进制形式
所以:(25.625)(十)=(19.A)(十六)


6. 十六----> 十
(19.A)(十六)
整数部分:
1*16(1)+9*16(0)=25
小数部分:
10*16(-1)=0.625
所以(19.A)(十六)=(25.625)(十)   




如何将带小数的二进制与八进制、十六进制数之间的转化问题

我们以(11001.101)(二)为例讲解一下进制之间的转化问题
说明:小数部份的转化计算机二级是不考的,有兴趣的人可以看一看



1. 二 ----> 八
(11001.101)(二)
整数部分:    从后往前每三位一组,缺位处有0填补,然后按十进制方法进行转化,  则有:
001=1
011=3
然后我们将结果按从下往上的顺序书写就是:31,那么这个31就是二进制11001的八进制形式

小数部分:    从前往后每三位一组,缺位处有0填补,然后按十进制方法进行转化,  则有:
101=5
然后我们将结果部分按从上往下的顺序书写就是:5,那么这个5就是二进制0.625的八进制形式
所以:(11001.101)(二)=(31.5)(八)


2. 八 ----> 二
(31.5)(八)
整数部分:从后往前每一位按十进制转化方式转化为三位二进制数,缺位处用0补充   则有:
1---->1---->001
3---->11
然后我们将结果按从下往上的顺序书写就是:11001,那么这个11001就是八进制31的二进制形式
说明,关于十进制的转化方式我这里就不再说了,上一篇文章我已经讲解了!

小数部分:从前往后每一位按十进制转化方式转化为三位二进制数,缺位处用0补充   则有:
5---->101
然后我们将结果按从下往上的顺序书写就是:101,那么这个101就是八进制5的二进制形式
所以:(31.5)(八)=(11001.101)(二)


3. 十六 ----> 二
(19.A)(十六)
整数部分:从后往前每位按十进制转换成四位二进制数,缺位处用0补充             则有:
9---->1001
1---->0001(相当于1)
则结果为00011001或者11001
小数部分:从前往后每位按十进制转换成四位二进制数,缺位处用0补充             则有:
A(即10)---->1010
所以:(19.A)(十六)=(11001.1010)(二)=(11001.101)(二)


4. 二 ----> 十六
(11001.101)(二)
整数部分:从后往前每四位按十进制转化方式转化为一位数,缺位处用0补充         则有:
1001---->9
0001---->1
则结果为19
小数部分:从前往后每四位按十进制转化方式转化为一位数,缺位处用0补充         则有:
1010---->10---->A
则结果为A
所以:(11001.101)(二)=(19.A)(十六)


最近有些朋友提了这样的问题“0.8的十六进制是多少?”
我想在我的空间里已经有了详细的讲解,为什么他还要问这样的问题那
于是我就动手算了一下,发现0.8、0.6、0.2... ...一些数字在进制之间的转化
过程中确实存在麻烦。

就比如“0.8的十六进制”吧!
无论你怎么乘以16,它的余数总也乘不尽,总是余8
这可怎么办啊,我也没折了
第二天,我请教了我的老师才知道,原来这么简单啊!


具体方法如下:
0.8*16=12.8
0.8*16=12.8
    .
    .
    .
    .
    .
取每一个结果的整数部分为12既十六进制的C
如果题中要求精确到小数点后3位那结果就是0.CCC
如果题中要求精确到小数点后4位那结果就是0.CCCC


现在OK了,我想我的朋友再也不会因为进制的问题烦愁了

Felix 發表在 痞客邦 PIXNET 留言(0) 人氣()